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The main aim of this paper is to provide some practical guidance 
to researchers on how statistical power analysis can be used to 
estimate sample size in empirical design. The paper describes 
the key assumptions underlying statistical power analysis and 
illustrates through several examples how to determine the 
appropriate sample size. The examples use hypotheses often 
tested in sport sciences and verified with popular statistical tests 
including the independent-samples t-test, one-way and two-
way analysis of variance (ANOVA), correlation analysis, and 
regression analysis. Commonly used statistical packages allow 
researchers to determine appropriate sample size for hypothesis 
testing situations listed above.
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What is already known on this topic?
The power of a test is the probability of correctly 
rejecting the null hypothesis. In a practical sense, 
the power tells us how likely we are to detect 
a statistically significant effect in our data (e.g., 
a difference between two groups, or a correlation), 
given that it really exists in the population. Taking 
the power of a test into account, appropriate sample 
size may be estimated already at the planning stage 
of a study.

What is the power of a test and what is its practical 
significance?

In recent years, it has become more common in sport 
sciences (and in many other disciplines) to consider 

the power of statistical tests. Editors and reviewers of 
leading journals will now often expect issues of test 
power to be addressed, but given that until recently 
power analysis had not featured prominently in 
empirical designs, many authors are understandably 
confused. What has primarily prevailed in research 
practice is null hypothesis testing (i.e., reporting 
the p-value). Calculating effect size estimates has 
only been a recent practice (e.g., for the context of 
metaanlysis see [1, 2]), whereas power analysis has 
been almost universally ignored. The very fact that 
people ask questions about statistical power analysis 
is one indication of the growing methodological and 
statistical awareness across research communities. 
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Substantial support in this respect is provided by 
various statistical software suites, packages, and free 
statistical applications.
Formally defined, the power of a statistical test is the 
probability of rejecting the null hypothesis when it is 
actually false [see 3, 4, 5, 6, 7, 8]. In a practical sense, 
the power of a test tells us how likely we are to detect 
a difference in our data (by finding it to be statistically 
significant), for instance a difference between two groups, 
or a significant correlation coefficient, given that in the 
population it really exists. The power of a statistical 
test depends on several factors, including effect size, 
the variability of the measure (the amount of variation 
in the data), the predetermined level of significance, 
directionality (directional vs. non-directional hypotheses), 
and sample size [4, 9]. We will return to these factors later 
in the appropriate sections, where we show by example 
how each factor affects the power of a test.
Failure to consider the power of a test can lead to 
substantial distortion and errors such as reporting no 
statistically significant differences between the groups 
or no significant correlations between given variables 
while in fact such meaningful differences or correlations 
exist in the population. Such distortion may result from 
using a sample size that is too small to reliably detect 
an important effect. As a result, a research report may 
convey a picture of reality that does not correspond 
with the facts. Yet, such undesirable errors can often 
be prevented by conducting a power analysis before 
the study begins. A power analysis helps address the 
fundamental question What sample size is ‘enough’?, 
or more precisely, How big a sample size is needed 
to detect the effect of interest (or to find a significant 
effect in our data) that exists in the population? [10, 11, 
12, 13, 14, 15, 16]. In other words, it helps researchers 
determine an appropriate (optimal) sample size prior 
to the study, which ensures high reliability of the 
conclusions.
There is a general consensus among methodologists 
and statisticians that a larger sample size is better than 
a small sample size. It has to be noted, though, that 
sample size is not an end it itself: it is but one factor 
that may strengthen confidence in research results. 
In fact, striving for the highest possible sample size 
is in general a bad idea; rather, a specific number of 
individuals or items in a representative sample of a given 
population should be used, one that is appropriate under 
the circumstances. Using a sample of people or animals 
much larger than is actually needed to obtain reliable 

results brings no research benefits, but may involve 
unnecessary suffering, risks, tie up research resources 
that could have been spent more usefully, and in the 
very least inflate the costs. On the other hand, adopting 
a sample size that is too small has consequences that 
are at least as serious. While financial resources have 
been spent on research, and participants may have 
incurred psychological costs, the results obtained may 
not correspond with reality. It is for these reasons that 
research funding agencies and institutions require 
from applicants adequate justification of the number of 
individuals sufficient to answer the research questions 
posed in the study [17, 18, 19].  
Taking all this into account, the objective of our paper 
is to present the theoretical basis for calculating the 
statistical power of a test, and to show how to determine 
the adequate sample size in a study, using hypothetical 
examples from sport sciences.

Power analysis in hypothesis testing
The issue of statistical power is closely linked to 
statistical hypothesis verification. Current standard 
practice in statistical hypothesis testing is a hybrid 
of the Fisher and the Neyman-Pearson approaches, 
and as such has received considerable attention [3, 
4, 20, 21]. Given that the combined approach to 
hypothesis testing plays a substantial role in the power 
of a statistical test, we will briefly recount it here. 
We will use an example of a one-sample z-test (i. e., 
a test for a single mean) which verifies the answer to 
the question: Does a particular sample come from 
a certain population? In other words, this z-test tells 
us whether the sample mean at hand differs from the 
population mean. The one-sample test is in general 
useful in research involving professional athletes. 
Here, researchers often ask whether the sample of 
athletes they are studying represents a highly select 
group in terms of a specific trait. More specifically, 
researchers may ask whether the sample group at hand 
differs from the genaral population mean or established 
population norms, for instance in a specific motor 
ability or some psychological trait. 
Let us assume that we plan to examine whether 
students from a town with a high number of schools 
offering extended programmes in sports (henceforth 
referred to as student-athletes) achieve better results in 
activities involving motor abilities than the total student 
population in the country. Specifically, we ask whether 
these student-athletes differ from the general student 
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population in the mean score for standing long jump. 
For practical reasons, assume that the size of a random 
sample of student-athletes is 100, and the mean score 
for standing long jump in this particular sample is 
x
_ 

= 169 cm with a standard deviation of s = 30 cm. The 
mean of the student population of the same sex and age, 
however, is μ = 160 cm, and the standard deviation is 
σ = 30 cm. In line with the current (hybrid) approach 
to statistical hypothesis verification, we formulate two 
hypotheses [e.g., 3, 4]. The first, the null hypothesis, 
assumes no difference between student-athletes and 
the total student population (that is, the mean for 
student-athletes is 160 cm). The second, the alternative 
hypothesis, can be either non-directional or directional. 
A non-directional hypothesis asserts that student-
athletes differ from the general student population 
without specifying the direction of the difference, 
whereas a directional hypothesis additionally predicts 
the direction of the difference, so it needs to specify 
whether the mean of student-athletes is higher or lower 
than the general student population mean. In our case, it 
seems reasonable to assume that the student-athletes, if 
at all different from students in general, are likely to be 
better, but not worse, at standing long jump. As we can 
reasonably predict the direction of the difference here, 
we settle for a directional alternative hypothesis which 
assumes a higher mean score for the standing long 
jump in the student-athletes than in the general student 
population. Crucial to the understanding of hypothesis 
verification is an understanding of a random sampling 
distribution of the mean.

The random sampling distribution of the mean and 
hypothesis verification
A random sampling distribution of the mean is 
a theoretical distribution of all possible sample mean 
values that would occur if we were to repeatedly draw 
an infinite number of random samples of a given (fixed) 
size from a particular population and replace it into the 
population (any sample has an equal chance of being 
selected). So it is as if every time we drew a random 
sample from a given population, we calculated and 
recorded its mean, and then we put the data back into 
the population (we replaced it). We repeat this sampling 
procedure infinitely many times – at least theoretically, 
as in real situations a sampling distribution generated 
from an infinite number of trials is infeasible [3, 4]. Still, 
mathematicians were able to determine the features of 
a random sampling distribution, and demonstrated that 

its mean is equal to the mean of a particular population, 
and its standard deviation equals:

σ
σ

x n
=

where σ  – population standard deviation;  n – sample size

The standard deviation of the random sampling 
distribution of the mean is termed the standard error 
of the mean. 
Now, to verify the null hypothesis we should first ask 
How far is a given sample mean from the mean under the 
null hypothesis as measured in standard deviation units 
of the sampling distribution (i.e., in standard error of the 
mean units)? In our case, an expected random sampling 
distribution of the mean is a distribution of means 
calculated from samples of size n = 100 each. Our earlier 
assumption was that there are no differences between 
student-athletes and the total student population, thus 
our null hypothesis states: the mean of student-athletes 
is μ0 = 160 cm. Therefore, we assume that the mean 
in the random sampling distribution (under the null 
hypothesis) equals μ = 160 cm. The standard deviation 
of the random sampling distribution (the standard 
error of the mean) equals: 30 100 3/ .=  If the sample 
mean of student-athletes falls in the top (highest) 5% 
of all sample means in the expected random sampling 
(null) distribution (where n = 100), we reject the null 
hypothesis in favour of the alternative hypothesis. In 
practice, this issue relates to the threshold value of the 
level of significance or the so-called alpha-level, which 
in sport sciences and social sciences is, by convention, 
often set at 0.05. This conventional value is known 
as Type I error rate, since it quantifies the risk, built 
into the logic of classical hypothesis testing, that the 
researcher will wrongly reject a true null hypothesis: 
in this case 5%. If the mean of the sample (athletes) 
does not fall within the top 5% of the expected values 
in the sampling distribution, then there is no reason to 
reject the null hypothesis. To evaluate this, we need to 
refer to the standard normal distribution, which holds 
information about the size of the area (percentage) below 
the normal curve. The size of this area depends on the 
distance from the mean measured in standard deviation 
units (so-called z-values or z-scores). The region of the 
top 5% of values corresponds to a z-score of 1.645. 
This informs us that the sample means that are greater 
than the population mean by 1.645 or more (in standard 
deviation units called the standard error of the mean in 
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this case) fall in the highest 5% of the sample means in 
the expected sampling distribution (assuming a normal 
distribution). We ask then How far, in standard deviation 
units of the sampling distribution (z-value), is the mean 
of student-athletes from the mean value under the null 
hypothesis (i.e., total student population mean)?, and Is 
the z-value greater than or equal to 1.645? The z-score 
formula helps to answer these questions:

z x

x

=
−µ
σ

0

 
where σ

σ
x n
=

z – standard score;  μ0  – population mean; 
x
_ 

– group mean;    σx
_
  – standard error of the mean;

σ – population standard deviation;    n – sample size

σx = =
30

100
3

 
then

 
z = −

=
169 160

3
3

In this case, the mean of student-athletes is greater 
than the mean expected under the null hypothesis by 
3 standard errors of the mean. The z-value of 3 falls 
above 1.645, indicating that the mean score for the 
standing long jump in the group of student-athletes 
falls within the highest 5% of the mean values that we 
would expect if the null hypothesis were true. Thus, we 
reject our null hypothesis in favour of the alternative 
hypothesis which assumes a higher mean in student-
athletes relative to the population mean. 
Note that findings and conclusions from the study of 
a sample are generalised to the population from which 
the group of student-athletes were randomly selected. 
We should remember, however, that it is still possible 
that we incorrectly reject the null hypothesis. After 
all, it will sometimes be the case that our randomly 
selected sample of student-athletes turns out to be 
rather untypical and, in fact, the student-athletes 
population mean does not differ meaningfully from the 
whole student population mean. If the assumed level 
of significance is 0.05, there is a 5% chance that we 
reject the null hypothesis when in fact it is true. The 
probability of rejecting the null hypothesis when it is 
true, or in other words, the likelihood of making a Type I 
error, is what Neyman & Pearson call alpha [see 22, 23].

Calculating the power of a test
In real research situations we often ask at the beginning 
of the study: What is the probability of obtaining 
a significant result? What are the chances of detecting 
an effect in our data given that it really exists in the 

population (that is, assuming that the effect is non-
zero)? This is a question of the probability of rejecting 
the null hypothesis when it is in fact false [see 5, 6, 
22, 23, 24, 25]. Put differently, this is a question of the 
power of a statistical test. 
Assume that there are solid grounds for predicting 
that the mean value of student-athletes performing 
the standing long jump really equals 169 cm and its 
standard deviation is 30 cm. So, we assume that the null 
hypothesis is false, and we want to know the probability 
of rejecting the null hypothesis if 100 student-athletes 
(n = 100) are randomly sampled from the student-
athlete population. What is then the probability of 
obtaining a significant result, given that the student-
athlete population mean is 169 cm, standard deviation 
is 30 cm, and the number of student-athletes in the 
sample is 100? The random sampling distribution under 
the alternative hypothesis is μ1 = 169, and the standard 
error of the mean is 3 (i.e., 30 100 3/ ).= To estimate 
the observed power of a statistical test we ask What is 
the probability of obtaining a sample mean equal to or 
greater than the critical z-value of 1.645, given that the 
alternative hypothesis is true (i.e., the  true mean of the 
student-athlete population is μ1 = 169 in our case)? The 
region of the sampling distribution under the alternative 
hypothesis which falls at and above 1.645 is the power 
of a statistical test (see Figure 1).
The standardized difference between the means 
under the alternative and null hypotheses equals: 
(169 – 160) / 3 = 3, where 3 is expressed in standard 
deviation units. Hence, the distance between the 
actual (true) mean of the sampling distribution (under 
the alternative hypothesis) and the critical z-value 
(z = 1.645) (for the sampling distribution under the null 
hypothesis) equals 3 – 1.645 = 1.355, as measured in 
standard deviation units (z = 1.355). A quick look-up of 
the obtained z-value in the z-table tells us that the region 
above z = 1.355 is 0.088. This is the value of a Type II 
error, called beta (in the Neyman-Pearson hypothesis-
testing framework), that is the probability of retaining 
the null hypothesis when it is false.
The complementary area to the right of beta (β) in the 
sampling distribution under the alternative hypothesis 
is the power of a test. It equals: 1 − β and in our case it 
is 0.912 (or 91.2%). 

What does the power of a test depend on?
The probability of rejecting a false null hypothesis 
is affected by several factors. Effect size, variability 
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of the measure, level of significance, choice between 
directional and non-directional hypothesis (resulting in 
one-tailed vs. two-tailed testing), and sample size all 
influence the power of a test (note that some of these are 
under the researcher’s control). Below, drawing on King 
& Minium [4, pp. 273-277] we briefly discuss these five 
factors. To illustrate how they affect the power of a test, 
we provide an example of each. 

1. Effect size
In our example, the effect size is the magnitude of the 
difference between the mean for student-athletes and the 
corresponding mean in the general student population. 
As the difference between the means increases, so does 
the power of a statistical test (i.e., the test becomes more 
powerful). For example, if the mean for student-athletes 
were 172 cm (rather than 169 cm), and other factors 
did not change, the power of the test would go up from 
0.91 to 0.99 (or 99%). In this case, the spacing between 
the expected sampling distribution of the means under 
the null hypothesis (the null distribution) and under 
the alternative hypothesis (the alternative distribution) 
would become greater, and the alternative distribution 
mean would be further away from the critical value 
z = 1.645 (i.e., the region (1 − β) would become larger). 
On the other hand, if the mean of student-athletes were 
165 cm, then the power would drop to 0.51 (or 51%). 
In such a case, the null distribution and the alternative 
distribution would overlap to a greater extent, and the 
region of (1 − β) would become correspondingly smaller. 

2. Variability of the measure
As the standard deviation of the population decreases, 
the standard error of the mean (i.e., the standard 
deviation of the sampling distribution of the mean) 
becomes reduced. This leads to an increase in test 
power. If standard errors are smaller, there is less 
overlap between the null distribution and the alternative 
distribution, as the normal curves get slimmer. The 
two distributions are further away from each other, as 
measured in standard error units (z-values). The mean 
of the alternative sampling distribution is further away 
from the critical value (z = 1.645). In our example, if the 
standard deviation of the population were σ = 25 (rather 
than σ = 30), and all other factors remained constant, 
the power of the test would increase to 0.97 (or 97%) 
from the initial 0.91 (91%). If, however, the standard 
deviation of the population in our example were σ = 40, 
the power would be reduced to 0.73 (or 73%).

3. Alpha level
If one sets a lower cut-off level of significance (alpha), 
the power of a test decreases. In our example, the z-value 
moves to the right, and the region of (1 − β) shrinks (see 
Figure 1). Using our example, if the level of significance 
were set at 0.01 (for one-tailed test z-value = 2.33), 
the power of the test would decline to 0.75 (or 75%).  
However, if alpha were raised to 0.1 (z-value = 1.28), 
then the power would increase to 0.96 (or 96%). The 
second scenario (alpha = 0.1 and power = 0.96) brings 
into focus the trade-off relationship between the two 

Figure 1. Sampling distributions for the null (H0) and alternative (H1) hypotheses
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types of error. With an alpha-level set too high, a test 
becomes more likely to find differences that do not 
really exist. Since variability and differences between 
the means are beyond the researcher’s control, the only 
way to get around the limitation and keep both types of 
error at low levels is to get a sufficiently large sample.

4. Directionality
In our example, we formulated a directional (one-tailed) 
alternative hypothesis, as we predicted that the mean of 
student-athletes would be higher than the population 
mean. We had a legitimate basis for predicting such 
a direction and we were thus justified in adopting a one-
tailed alternative hypothesis. The critical value needed to 
reject the null hypothesis is z = 1.645. If, however, there 
was no sufficient substantive justification for assuming 
a direction (e.g., higher or lower), we would formulate 
a non-directional (two-tailed) alternative hypothesis. 
Our two-tailed alternative hypothesis would only say 
that a difference exists, but it would not specify the 
direction of the difference. For a two-tailed hypothesis 
in a z-test, the critical z-value equals 1.96 (assuming 
alpha = 0.05, that is when 2.5% of the null distribution 
lies in the rejection regions called tails). Compared to 
the directional scenario, the region of (1 − β) would 
shrink, and thus the power of a test would decrease.  
The power of the test in our example would decrease 
to 0.85 (or 85%).  

5. Sample size
The larger the sample size, the greater the power of a test. 
When sample size increases, the standard deviation of 
the sampling distribution decreases (in other words, the 
standard error of the mean gets reduced). Hence, what 
also increases is the distance (z-score) between the 
means under the null and alternative hypotheses, and 
the distance between the mean under the alternative 
hypothesis and the critical value. In our example, 
if 125 individuals were randomly sampled instead of 
100, the power of a test would increase to 0.96 (or 96%), 
or it would drop to 0.68 (68%) for a sample size of 
50 individuals. 

Sample size estimation
By convention, a desired value for power is 0.8 
[5, 6]. This means that the probability of rejecting 
a false null hypothesis is 0.8 (or 80%). How big 
a sample size do we need to say that the probability 
of obtaining a significantly higher mean in the group 

of student-athletes (compared with the total student 
population) is 0.8 (or 80%), given that the student-
athlete population mean is 169 cm, and their standard 
deviation is 30 cm? Assume that we adopt an alpha-
level of 0.05.
The formula below calculates a sample size adequate 
for the study [26, 27]:

n
z z
x

=
+

−
− −( )

( )

1 1

2 2

0

2

α β σ

µ

z1 – α  –  z-value for α = 0.05 (one-tailed) = 1.645
z1 – β  –  z-value for the desired power (z-value = 0.841 for 

power = 0.8)
x
_ 

– sample mean;   μ0 –  population mean

To calculate an optimal sample size for our example we 
enter the values into the formula. This gives us:

n = + ⋅
=

( . . )

( )
.

1 645 0 841 30

9
68 67

2 2

2

Thus, to detect an effect with the probability of 0.8 
(or 80%) when a one-tailed test is used and α = 0.05, 
we need a sample size of 69 individuals.

Examples of sample size estimation in sport science
In the next section, we will present five examples of 
sample size estimation. All our examples illustrate 
hypothesis verification with the use of tests popular in 
sport science such as t-test for independent samples, 
one-way analysis of variance, two-way analysis of 
variance, r-Pearson correlation coefficients, and 
multiple regression analysis. The first example is given 
in greater detail. 
Sample size can be determined with the use of various 
statistical software packages and statistical applications, 
e.g., STATISTICA, Statistical Package for the Social 
Sciences (SPSS), R, G*Power 3. In this article we use 
STATISTICA v10.

Example 1. Comparing athletes from two sport 
disciplines
Studies that look at professional athletes will sometimes 
compare the motor abilities of athletes representing 
different sport disciplines. We may stop here and ask 
How big the samples of athletes need to be?  Let us 
assume that we aim to compare basketball players and 
volleyball players in terms of their running time in 
a 60-metre sprint. 
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First, to find out what has already been established in 
this respect, we analyse the theoretical premises that 
underlie studies in the area of interest, and examine 
studies that have been published to date. At this stage, 
we (1) analyse whether there is a sufficient substantive 
justification for a difference between the two disciplines, 
and (2) examine the expected effect size, that is the most 
likely size of the difference (e.g., drawing on previous 
study reports, we analyse the differences between the 
means in two groups measured in standard deviation 
units). We try to identify the potential means of these 
two groups and the variability within the population 
(note that effect size is often expressed in units of 
population variability). Assume that a metaanalysis of 
study reports shows that basketball players may have 
a slight advantage over volleyball players in 60-metre 
sprint time. For instance, let us assume: μ1 = 8.2 sec for 
basketball players, μ2 = 8.4 sec for volleyball players, 
and the population standard deviation σ = 0.6 sec. 
Now, using Cohen’s formula we calculate the expected 
standardized effect size for the difference between the 
means. In our case, the expected standardized effect 
is small, it equals Es = 0.33. At this initial stage, if the 
literature provides no clues as to effect size, we may 
also wish to conduct a pilot study so that we can obtain 
a rough estimate. 
Next, we formulate the null hypothesis and the 
alternative hypothesis. Our alternative hypothesis can 
be either directional or non-directional. We consider the 
options, and then make a decision based on theoretical 
premises and findings from previous research. Assume 
that we were able to formulate a directional hypothesis 
as the direction of a difference between the groups 
is supported by theoretical premises (in this case, 
60-metre running speed plays a bigger role in basketball 
than in volleyball) and empirical evidence. In our 
alternative hypothesis we then assume that a difference 
in 60-metre sprint times between the groups is in 
favour of basketball players (that is, basketball players’ 
times are lower). 
The next step involves choosing an appropriate 
statistical test. To verify the null hypothesis (or in 
other words, to compare the group means obtained in 
our study) we will compute the t-test for independent 
samples. Next to be specified is the level of 
significance along with the power of a test. In the field 
of sport, medical and social sciences it has become 
conventional to use an alpha of 0.05 and statistical 
power of 0.8.

We are now ready to determine the size of our samples. 
Here we ask How big do our samples need to be in order 
to detect an effect with the probability of 0.8 (or 80%)? 
The assumptions behind our question embrace: the effect 
size of 0.33 in standard deviation units (μ1 = 8.2 sec for 
basketball players, μ2 = 8.4 sec for volleyball players, 
standard deviation σ = 0.6 sec), a one-tailed alternative 
hypothesis, alpha = 0.05, and t-test for independent 
samples as our test statistic.
We enter the values in  the Power Analysis module of the 
STATISTICA software and obtain results as in Table 1.

Table 1. Sample size calculation for comparing two group 
means with a t-test for independent samples

Values
Assumed population mean μ1 8.20
Assumed population mean μ2 8.40
Assumed population s.d. (σ) 0.60
Standardized effect (Es) –0.33*
Type I Error rate (alpha) 0.05
Critical value of t 1.65
Power goal 0.80
Actual power for required n 0.80
Required sample size n (per group) 112.00

* the minus is a consequence of entering the lower value (μ1) first

The analysis shows that in a situation when the population 
effect size is Es = 0.33, a number of 112 individuals 
would be needed in each group to detect a statistically 
significant difference between them (at the 0.05 level) 
with a probability of 0.8 (or 80%). Note that at the pre-
study stage the estimation of expected effect size may 
be less accurate, and also some data may turn out to be 
unusable. To compensate, an investigator may wish to 
increase the size of each group by 10-15%. 
It may happen, however, that in many cases where the 
effects are small or medium researchers may report that 
no (statistically significant) differences were found.  
As a case in point, if we decided that the number of 
individuals in each group was 50 (i.e., 50 basketball 
players and 50 volleyball players), the probability of 
obtaining a significant result would not be much higher 
than 0.50 (50%). And, if there were only 30 individuals 
in each group, the chance of finding a significant 
difference would drop to 0.36 (36%). We illustrate the 
relationship between sample size and the power of this 
particular test in Figure 2 (for Es = 0.33, alpha = 0.05).
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Power vs. n (Es = 0.33, alpha = 0.05)
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Figure 2. The power of a test as a function of sample size 
(Es = 0.33, alpha = 0.05)

As already stated, the power of a test and the size of 
a sample in research depend on the population effect 
size. Now assume a different scenario. Suppose that 
the mean of volleyball players was μ2 = 8.7 sec (rather 
than μ2 = 8.4 sec). The difference between the group 
means has now become greater and equals Es = 0.83 
(as expressed in standard deviation units). In such 
a situation, to detect an effect with an 80% chance 
(power = 0.8), we would only need 19 individuals in 
each group. Figure 3 illustrates the relationship between 
the effect size and sample size where there is an 80% 
chance of detecting an effect at the 0.05 alpha level 
(power = 0.8, alpha = 0.05).

Of course, one-tailed tests may not always be appropriate. 
When in doubt, it is always preferable to adopt the more 
conservative non-directional hypothesis. As detailed 
earlier, if we planned to run a two-tailed test on our data 
(holding other criteria constant), the size of samples needed 
to detect an effect would increase. As shown in Table 2, 
to obtain an effect of Es = 0.33 with 0.8 probability, for 
a two-tailed t-test each group should contain 143 people.

Table 2. Sample size estimation for comparing two group 
means with a two-tailed t-test for independent samples

Value
Assumed population mean (μ1) 8.20
Assumed population mean (μ2) 8.40
Assumed population s.d. (σ) 0.60
Standardized effect (Es) –0.33
Type I Error rate (alpha) 0.05
Critical value of t 1.97
Goal power 0.80
Actual power for required n 0.80
Required sample size n (per group) 143.00

Example 2. Comparing athletes from more than two 
sport disciplines
Here we will extend Example 1 a little further to compare 
athletes from more than two sport disciplines. Assume 
that now we aim to compare basketball players, volleyball 
players, and handball players in terms of their running time 
in a 60-metre sprint. Again, a thorough literature review 
and metanalysis are essential at this stage. This time we 
infer from previous reports that the means are likely to 
be as follows: μ1 = 8.0 sec (basketball players), μ2 = 8.2 
sec (handball players), μ3 = 8.6 sec (volleyball players), 
and the population standard deviation is approximately 
σ = 0.6. We analyse the data with one-way analysis of 
variance (ANOVA). What sample size do we need to 
detect an overall main effect of discipline?
A measure of the standardized effect size for ANOVA 
used in the STATISTICA software to calculate the 
power of a test and a required sample size is the RMSSE 
(Root Mean Square Standardized Effect). The RMSSE 
is an effect from the d family of size effects. For reasons 
of space and clarity, we will not go into detail about how 
this effect is computed. Suffice it to mention that we 
interpret its value as the standardized mean difference 
(measured in standard deviation units) between each 
group mean and the grand mean [28, 29, 30]. It is 
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Figure 3. Sample size required to detect an effect with pow-
er = 0.8 as a function of standardized effect size (alpha = 0.05, 
two-tailed test)
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conventional to assume that an RMSSE of 0.15 is 
considered a small effect, a value of 0.3 is medium, and 
an RMSSE of 0.5 reflects a large effect. In our example, 
RMSSE is 0.51. However, researchers do not need to 
enter the RMSSE themselves as the software calculates 
the RMSSE once the assumed means and the population 
standard deviation have been entered.
Three sport disciplines (basketball, handball, and 
volleyball) were in this case entered as fixed factors (i.e., 
the three disciplines were selected purposefully, rather 
than chosen at random). Table 3 below shows (among 
other details) the estimated size of groups for the power 
of 0.8, alpha = 0.05, and gives the means and standard 
deviations in the population.

Table 3. Sample size estimation for comparing three group 
means with one-way ANOVA

Value
Number of groups 3.00
Assumed RMSSE in population 0.51
Noncentrality parameter (delta) 5.19
Type I Error rate (alpha) 0.05
Power goal 0.80
Actual power for required n 0.81
Required sample size (n) (per group) 20.00

As detailed in Table 3, to detect an effect with a 0.8 
chance (80%), we need 20 individuals in each group. 
Again, note that in order to ensure more confidence in 
detecting an effect, a researcher may want to increase 
the size of each group by 10-15%.

Example 3. Testing a two-way interaction effect
Imagine that there is some scientific basis for assuming 
that motor abilities in junior and senior athletes differ 
relative to a sport discipline.  For instance, the difference 
in the standing long jump of juniors and seniors is greater 
in discipline A than in discipline B. Such a complex 
effect is called a two-way interaction effect. Assume that 
in discipline A the expected means in the population are: 
μ1 = 180 cm for juniors, and μ2 = 210 for seniors. The 
corresponding means in discipline B are: μ3 = 180 cm 
(juniors), and μ4 = 190 cm (seniors). Assume further that 
the population standard deviation is 30 cm (σ = 30 cm). 
We ask How big do our samples need to be to detect 
this interaction effect with an 80% probability (0.8)? 
Now, in the STATISTICA software, where factors (sport 

discipline: A, B; age category: junior, senior) are defined 
by rows and columns, we enter our data (our means 
and σ) into the columns and rows. The analysis produces 
information presented in Table 4.  

Table 4.  Sample size estimation involving a two-way inter-
action effect (two-way ANOVA)

Value
Number of rows 2.00
Number of columns 2.00
Type I Error rate (alpha) 0.05
Power goal 0.80
Interaction effect:
Assumed RMSSE in population 0.33
Actual power for required n 0.80
Required sample size (n) 72.00

As detailed in Table 4, to have an 80% chance (0.8) of 
detecting an effect, we would need 72 individuals in 
each of the four groups (Group 1: discipline A, juniors; 
Group 2: discipline A, seniors; Group 3: discipline B, 
juniors; Group 4: discipline B, seniors). Statistica’s 
Power Analysis module also computes required sample 
sizes for the two main factors, but we omit these here, as 
the logic is exactly the same as in the previous example.

Example 4. Correlation between two variables 
Let us assume that we want to examine the relationship 
between a specific motor ability and sport performance 
in a particular test in football players (using a quantitative 
measure of effectiveness, say time). To determine the 
strength and direction of the relationship we examine, 
we use the Pearson’s correlation coefficient (r). Assume 
that our literature review has identified somewhat 
consistent findings showing that we can expect an 
r = –0.45. Assume further that the theoretical grounds 
for using a one-tailed test are solid and sufficient. Again, 
we ask How big a sample is enough?

Table 5.  Sample size estimation for a correlation coefficient 
using a one-tailed test

Value
Assumed correlation in population (Ro) –0.45
Type I Error rate (alpha) 0.05
Goal power 0.80
Actual power for required n 0.82
Required sample size (n) 30.00



204                    TRENDS IN SPORT SCIENCES  December 2014

M. TOMCZAK, E. TOMCZAK, KLEKA, LEW

As shown in Table 5, this time the sample size of 30 would 
be enough to detect an effect with an approximately 
80% chance (0.8). If a two-tailed test was conducted, the 
sample would have to be bigger (as explained earlier), 
n = 36 (see Table 6).

Table 6.  Sample size estimation for a correlation coefficient 
using a two-tailed test

Value
Assumed correlation in population (Ro) –0.45
Type I Error rate (alpha) 0.05
Goal power 0.80
Actual power for required n 0.81
Required sample size (n) 36.00

As mentioned earlier, the smaller the effect size, the 
greater the sample size that is needed to detect the effect 
(with all other factors kept constant, that is power = 0.8, 
alpha = 0.05, two-tailed test) (see Figure 4).
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Figure 4. Required sample size to detect an effect with pow-
er = 0.8 as a function of the size of the correlation coefficient 
(alpha = 0.05, two-tailed test)

Example 5. Verifying the relationship between several 
independent variables and one dependent variable
Let us assume that we study the relationship between 
several psychological traits and effectiveness. 
Psychological traits may embrace: emotional reactivity 
(negatively related to resistance to stress), achievement 
motivation, and the level of aggression. The traits are 
evaluated with the use of appropriate questionnaires, 
where a specific score on a scale is an indicator of 
a specific trait, and the score calculated from the official 

qualification list is an indicator of effectiveness. In 
such a situation we often conduct a multiple regression 
analysis. Assume that previous research has revealed 
that these three predictors account for approximately 
35% of the variance in effectiveness. How large does 
our sample need to be, so that we would detect the effect 
with 0.8 probability?

Table 7. Sample size estimation for multiple regression anal-
ysis – a relationship between three independent variables and 
one dependent variable

Value
Number of predictors 3.00
R2 for null hypothesis (H0) 0.00
Assumed R2 in population 0.35
Type I Error rate (alpha) 0.05
Goal power 0.80
Actual power for required n 0.80
Required sample size (n) 27.00

Table 7 shows that to detect an effect with an 80% 
chance (0.8), a sample size of 27 individuals is required. 
Required sample size is also dependent on the number 
of predictors, i.e. the bigger the number of predictors,  
the greater the sample size needed for the study.
In our example, we estimate the power of a test only 
for the squared multiple correlations for the Omnibus 
F-test. Thus, in our case, when using a sample size 
as small as 27, it may happen that we will not detect 
a relationship between a particular predictor and the 
dependent variable (with other predictors held constant). 
Therefore, an estimated sample size should be larger. 
Some authors recommend that for regression analysis 
10 individuals per one predictor is an absolute minimum 
(hence, 30 in our example with 3 predictors). Other 
authors claim, however, that even a sample size of 
10 per predictor is not enough.

Step by step summary: How to use power analysis to 
estimate required sample size
As detailed earlier, a number of steps can be taken even 
before any data are collected to estimate an appropriate 
sample size needed for a study. To determine an 
adequate (optimal) sample size for your study [see 4, 
17, 18]: 
1. Analyse the theoretical premises and studies done 

hitherto that address your topic of interest. Estab-

(power = 0.8, alpha = 0.05)
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lish what is already known about the topic. As you 
continue to review the literature, try to identify the 
grounds behind a given difference, correlation, etc. 
(whether they are substantively and scientifically 
justified). Note down or compute estimates of effect 
size (e.g., differences between the means expressed 
in standard deviation units, a correlation coefficient, 
etc.). To compute effect size, you will often need 
mean values and a measure of variability (see [20] 
for details).

2. Formulate the null hypothesis and reflect on 
what form the alternative hypothesis will take. 
Drawing on theoretical premises, decide whether 
your alternative hypothesis will be directional or 
non-directional. For instance, judge whether the 
direction of a difference between the means or 
a correlation can be justified in a legitimate and 
substantive way. 

3. Decide what statistical test to use to verify the sta-
tistical hypotheses. 

4. Specify the level of significance (alpha). A common 
practice in sport, medical, and social sciences is to 
set alpha at 0.05. 

5. Decide on the desired test power. In sport sciences 
the power is often specified at 0.8.

6. Determine the required sample size. 

What this paper adds?
The paper emphasises the need to consider the power 
of a test in sport sciences. The authors discuss the 
main assumptions behind statistical power analysis, 
and demonstrate through hypothetical examples 
from sport sciences how to estimate the required 
sample size at the pre-study stage. The examples 
illustrate statistical hypothesis verification with the 
use of independent-sample t-test, one-way and two-
way analysis of variance, correlation analysis, and 
multiple regression analysis.
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